Sulfur transfer through an arbuscular mycorrhiza.

نویسندگان

  • James W Allen
  • Yair Shachar-Hill
چکیده

Despite the importance of sulfur (S) for plant nutrition, the role of the arbuscular mycorrhizal (AM) symbiosis in S uptake has received little attention. To address this issue, 35S-labeling experiments were performed on mycorrhizas of transformed carrot (Daucus carota) roots and Glomus intraradices grown monoxenically on bicompartmental petri dishes. The uptake and transfer of 35SO4(2-) by the fungus and resulting 35S partitioning into different metabolic pools in the host roots was analyzed when altering the sulfate concentration available to roots and supplying the fungal compartment with cysteine (Cys), methionine (Met), or glutathione. Additionally, the uptake, transfer, and partitioning of 35S from the reduced S sources [35S]Cys and [35S]Met was determined. Sulfate was taken up by the fungus and transferred to mycorrhizal roots, increasing root S contents by 25% in a moderate (not growth-limiting) concentration of sulfate. High sulfate levels in the mycorrhizal root compartment halved the uptake of 35SO4(2-) from the fungal compartment. The addition of 1 mm Met, Cys, or glutathione to the fungal compartment reduced the transfer of sulfate by 26%, 45%, and 80%, respectively, over 1 month. Similar quantities of 35S were transferred to mycorrhizal roots whether 35SO4(2-), [35S]Cys, or [35S]Met was supplied in the fungal compartment. Fungal transcripts for putative S assimilatory genes were identified, indicating the presence of the trans-sulfuration pathway. The suppression of fungal sulfate transfer in the presence of Cys coincided with a reduction in putative sulfate permease and not sulfate adenylyltransferase transcripts, suggesting a role for fungal transcriptional regulation in S transfer to the host. A testable model is proposed describing root S acquisition through the AM symbiosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of bacteria and mycorrhiza in plant sulfur supply

Plant growth is highly dependent on bacteria, saprophytic, and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S) in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria r...

متن کامل

Effect of Arbuscular Mycorrhiza Fungi Inoculation on Growth and Uptake of Mineral Nutrition in Ipomoea aquatica

A green house experiment was conducted to investigate the effect of arbuscular mycorrhiza inoculation on plant growth and uptake of mineral nutrition in Ipomoea aquatica considering the objective of using environmental friendly biofertilizer instead of chemical fertilizer. A common leafy vegetable plant Ipomoea aquatica was grown with mycorrhiza and without mycorrhiza for 42 days. After harvest...

متن کامل

Enhanced Growth of Multipurpose Calliandra (Calliandra calothyrsus) Using Arbuscular Mycorrhiza Fungi in Uganda

This study was conducted to compare the effect of selected arbuscular mycorrhiza fungi genera and their application rates for enhanced Calliandra growth in Uganda. The performance of Calliandra under different types and rates of arbuscular mycorrhiza fungi inoculation was assessed in the greenhouse using sterilized Mabira soils. Four dominant genera were isolated from the rhizosphere of sorghum...

متن کامل

Effect of Arbuscular Mycorrhiza on Growth and Physiological Behavior of PHL-C Rootstock

PHL-C is one of the dwarf sweet cherry rootstocks which is a hybrid between P. avium L. × P. cerasus L. Direct rooting of sweet cherry rootstocks is difficult which can be solved by using in vitro propagation. Transfer of plantlets from in vitro to ex vitro limit the use of micro propagation, because of weak root systems and low survival rates. This study was conducted in order to select the be...

متن کامل

Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantificati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 149 1  شماره 

صفحات  -

تاریخ انتشار 2009